An Empirical Investigation of Different Classifiers, Encoding, and Ensemble Schemes for Next Event Prediction Using Business Process Event Logs

Author:

Tama Bayu Adhi1ORCID,Comuzzi Marco2ORCID,Ko Jonghyeon2

Affiliation:

1. Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH)

2. School of Management Engineering, Ulsan National Institute of Science and Technology (UNIST)

Abstract

There is a growing need for empirical benchmarks that support researchers and practitioners in selecting the best machine learning technique for given prediction tasks. In this article, we consider the next event prediction task in business process predictive monitoring, and we extend our previously published benchmark by studying the impact on the performance of different encoding windows and of using ensemble schemes. The choice of whether to use ensembles and which scheme to use often depends on the type of data and classification task. While there is a general understanding that ensembles perform well in predictive monitoring of business processes, next event prediction is a task for which no other benchmarks involving ensembles are available. The proposed benchmark helps researchers to select a high-performing individual classifier or ensemble scheme given the variability at the case level of the event log under consideration. Experimental results show that choosing an optimal number of events for feature encoding is challenging, resulting in the need to consider each event log individually when selecting an optimal value. Ensemble schemes improve the performance of low-performing classifiers in this task, such as SVM, whereas high-performing classifiers, such as tree-based classifiers, are not better off when ensemble schemes are considered.

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Theoretical Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3