Object-Oriented Travel Package Recommendation

Author:

Tan Chang1,Liu Qi1,Chen Enhong1,Xiong Hui2,Wu Xiang1

Affiliation:

1. University of Science and Technology of China

2. Rutgers University

Abstract

Providing better travel services for tourists is one of the important applications in urban computing. Though many recommender systems have been developed for enhancing the quality of travel service, most of them lack a systematic and open framework to dynamically incorporate multiple types of additional context information existing in the tourism domain, such as the travel area, season, and price of travel packages. To that end, in this article, we propose an open framework, the Objected-Oriented Recommender System (ORS), for the developers performing personalized travel package recommendations to tourists. This framework has the ability to import all the available additional context information to the travel package recommendation process in a cost-effective way. Specifically, the different types of additional information are extracted and uniformly represented as feature--value pairs. Then, we define the Object, which is the collection of the feature--value pairs. We propose two models that can be used in the ORS framework for extracting the implicit relationships among Objects. The Objected-Oriented Topic Model (OTM) can extract the topics conditioned on the intrinsic feature--value pairs of the Objects. The Objected-Oriented Bayesian Network (OBN) can effectively infer the cotravel probability of two tourists by calculating the co-occurrence time of feature--value pairs belonging to different kinds of Objects. Based on the relationships mined by OTM or OBN, the recommendation list is generated by the collaborative filtering method. Finally, we evaluate these two models and the ORS framework on real-world travel package data, and the experimental results show that the ORS framework is more flexible in terms of incorporating additional context information, and thus leads to better performances for travel package recommendations. Meanwhile, for feature selection in ORS, we define the feature information entropy, and the experimental results demonstrate that using features with lower entropies usually leads to better recommendation results.

Funder

Division of Information and Intelligent Systems

Ministry of Science and Technology of the People's Republic of China

National Natural Science Foundation of China

Division of Computing and Communication Foundations

Ministry of Education of the People's Republic of China

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Theoretical Computer Science

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3