Affiliation:
1. Wuhan University, Wuhan, China
2. Huazhong University of Science and Technology, China
3. State Key Lab of Mathematical Engineering and Advanced Computing, China
Abstract
Both reviews and user-item interactions (i.e., rating scores) have been widely adopted for user rating prediction. However, these existing techniques mainly extract the latent representations for users and items in an independent and static manner. That is, a single static feature vector is derived to encode user preference without considering the particular characteristics of each candidate item. We argue that this static encoding scheme is incapable of fully capturing users’ preferences, because users usually exhibit different preferences when interacting with different items. In this article, we propose a novel
c
ontext-
a
ware user-item
r
epresentation
l
earning model for rating prediction, named CARL. CARL derives a joint representation for a given user-item pair based on their individual latent features and latent feature interactions. Then, CARL adopts Factorization Machines to further model higher order feature interactions on the basis of the user-item pair for rating prediction. Specifically, two separate learning components are devised in CARL to exploit review data and interaction data, respectively:
review-based feature learning
and
interaction-based feature learning
. In the review-based learning component, with convolution operations and attention mechanism, the pair-based relevant features for the given user-item pair are extracted by jointly considering their corresponding reviews. However, these features are only reivew-driven and may not be comprehensive. Hence, an interaction-based learning component further extracts complementary features from interaction data alone, also on the basis of user-item pairs. The final rating score is then derived with a dynamic linear fusion mechanism. Experiments on seven real-world datasets show that CARL achieves significantly better rating prediction accuracy than existing state-of-the-art alternatives. Also, with the attention mechanism, we show that the pair-based relevant information (i.e., context-aware information) in reviews can be highlighted to interpret the rating prediction for different user-item pairs.
Funder
National Natural Science Foundation of China
Natural Scientific Research Program of Hubei Province
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Science Applications,General Business, Management and Accounting,Information Systems
Cited by
147 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献