Read the News, Not the Books: Forecasting Firms’ Long-term Financial Performance via Deep Text Mining

Author:

Zhai Shuang (Sophie)1,Zhang Zhu (Drew)2

Affiliation:

1. University of Oklahoma, Norman, OK, USA

2. Iowa State University, Ames, IA, USA

Abstract

In this paper, we show textual data from firm-related events in news articles can effectively predict various firm financial ratios, with or without historical financial ratios. We exploit state-of-the-art neural architectures, including pseudo-event embeddings, Long Short-Term Memory Networks, and attention mechanisms. Our news-powered deep learning models are shown to outperform standard econometric models operating on precise accounting historical data. We also observe forecasting quality improvement when integrating textual and numerical data streams. In addition, we provide in-depth case studies for model explainability and transparency. Our forecasting models, model attention maps, and firm embeddings benefit various stakeholders with quality predictions and explainable insights. Our proposed models can be applied both when numerically historical data is or is not available.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science,Management Information Systems

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Economic Value of Words: an Evaluation of News for Economic Analysis;2024 IEEE Latin American Electron Devices Conference (LAEDC);2024-05-08

2. A technique to forecast Pakistan’s news using deep hybrid learning model;International Journal of Information Technology;2024-03-11

3. Harnessing Cognitively Inspired Predictive Models to Improve Investment Decision-Making;Cognitive Computation;2024-01-26

4. Non-Monotonic Generation of Knowledge Paths for Context Understanding;ACM Transactions on Management Information Systems;2023-10-20

5. A Technique to Forecast Pakistan’s News using Deep Hybrid Learning Model;2023-06-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3