Joint Transferable Dictionary Learning and View Adaptation for Multi-view Human Action Recognition

Author:

Sun Bin1,Kong Dehui1,Wang Shaofan1,Wang Lichun1,Yin Baocai1

Affiliation:

1. Beijing University of Technology, Beijing, China

Abstract

Multi-view human action recognition remains a challenging problem due to large view changes. In this article, we propose a transfer learning-based framework called transferable dictionary learning and view adaptation (TDVA) model for multi-view human action recognition. In the transferable dictionary learning phase, TDVA learns a set of view-specific transferable dictionaries enabling the same actions from different views to share the same sparse representations, which can transfer features of actions from different views to an intermediate domain. In the view adaptation phase, TDVA comprehensively analyzes global, local, and individual characteristics of samples, and jointly learns balanced distribution adaptation, locality preservation, and discrimination preservation, aiming at transferring sparse features of actions of different views from the intermediate domain to a common domain. In other words, TDVA progressively bridges the distribution gap among actions from various views by these two phases. Experimental results on IXMAS, ACT4 2 , and NUCLA action datasets demonstrate that TDVA outperforms state-of-the-art methods.

Funder

Beijing Outstanding Young Scientists Projects

National Natural Science Foundation of China

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Study on Vision-Based Human Activity Recognition Approaches;Smart Innovation, Systems and Technologies;2024

2. Application of 3D recognition algorithm based on spatio-temporal graph convolutional network in basketball pose estimation;International Journal for Simulation and Multidisciplinary Design Optimization;2024

3. Unsupervised video segmentation for multi-view daily action recognition;Image and Vision Computing;2023-06

4. Dictionary-based multi-view learning with privileged information;IEEE Transactions on Circuits and Systems for Video Technology;2023

5. In-Home Older Adults’ Activity Pattern Monitoring Using Depth Sensors: A Review;Sensors;2022-11-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3