Delay-Aware Quality Optimization in Cloud-Assisted Video Streaming System

Author:

Wu Jiyan1ORCID,Cheng Bo1,Yang Yuan2ORCID,Wang Ming1ORCID,Chen Junliang1

Affiliation:

1. Beijing University of Posts and Telecommunications, Beijing, P. R. China

2. Southeast University, Jiangsu Province, P. R. China

Abstract

Cloud-assisted video streaming has emerged as a new paradigm to optimize multimedia content distribution over the Internet. This article investigates the problem of streaming cloud-assisted real-time video to multiple destinations (e.g., cloud video conferencing, multi-player cloud gaming, etc.) over lossy communication networks. The user diversity and network dynamics result in the delay differences among multiple destinations. This research proposes <underline>D</underline>ifferentiated cloud-<underline>A</underline>ssisted <underline>VI</underline>deo <underline>S</underline>treaming (DAVIS) framework, which proactively leverages such delay differences in video coding and transmission optimization. First, we analytically formulate the optimization problem of joint coding and transmission to maximize received video quality. Second, we develop a quality optimization framework that integrates the video representation selection and FEC (Forward Error Correction) packet interleaving. The proposed DAVIS is able to effectively perform differentiated quality optimization for multiple destinations by taking advantage of the delay differences in cloud-assisted video streaming system. We conduct the performance evaluation through extensive experiments with the Amazon EC2 instances and Exata emulation platform. Evaluation results show that DAVIS outperforms the reference cloud-assisted streaming solutions in video quality and delay performance.

Funder

National Natural Science Foundation of China

National High-tech R8D Program of China

Natural Science Foundation of Jiangsu Province of China

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3