Content-adaptive image downscaling

Author:

Kopf Johannes1,Shamir Ariel2,Peers Pieter3

Affiliation:

1. Microsoft Research

2. The Interdisciplinary Center

3. College of William & Mary

Abstract

This paper introduces a novel content-adaptive image downscaling method. The key idea is to optimize the shape and locations of the downsampling kernels to better align with local image features. Our content-adaptive kernels are formed as a bilateral combination of two Gaussian kernels defined over space and color, respectively. This yields a continuum ranging from smoothing to edge/detail preserving kernels driven by image content. We optimize these kernels to represent the input image well, by finding an output image from which the input can be well reconstructed. This is technically realized as an iterative maximum-likelihood optimization using a constrained variation of the Expectation-Maximization algorithm. In comparison to previous downscaling algorithms, our results remain crisper without suffering from ringing artifacts. Besides natural images, our algorithm is also effective for creating pixel art images from vector graphics inputs, due to its ability to keep linear features sharp and connected.

Funder

Israel Science Foundation

Division of Information and Intelligent Systems

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Learned fractional downsampling network for adaptive video streaming;Signal Processing: Image Communication;2024-10

2. Bottle cap art via clustering and optimal color assignments;The Visual Computer;2024-06-12

3. Depth Self-Supervision for Single Image Novel View Synthesis;2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS);2023-10-01

4. Perceptual cue-guided adaptive image downscaling for enhanced semantic segmentation on large document images;International Journal on Document Analysis and Recognition (IJDAR);2023-09-28

5. Guided Linear Upsampling;ACM Transactions on Graphics;2023-07-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3