Bilateral blue noise sampling

Author:

Chen Jiating1,Ge Xiaoyin2,Wei Li-Yi3,Wang Bin1,Wang Yusu2,Wang Huamin2,Fei Yun1,Qian Kang-Lai1,Yong Jun-Hai1,Wang Wenping4

Affiliation:

1. Tsinghua University

2. The Ohio State University

3. The University of Hong Kong and Microsoft Research

4. The University of Hong Kong

Abstract

Blue noise sampling is an important component in many graphics applications, but existing techniques consider mainly the spatial positions of samples, making them less effective when handling problems with non-spatial features. Examples include biological distribution in which plant spacing is influenced by non-positional factors such as tree type and size, photon mapping in which photon flux and direction are not a direct function of the attached surface, and point cloud sampling in which the underlying surface is unknown a priori. These scenarios can benefit from blue noise sample distributions, but cannot be adequately handled by prior art. Inspired by bilateral filtering, we propose a bilateral blue noise sampling strategy. Our key idea is a general formulation to modulate the traditional sample distance measures, which are determined by sample position in spatial domain, with a similarity measure that considers arbitrary per sample attributes. This modulation leads to the notion of bilateral blue noise whose properties are influenced by not only the uniformity of the sample positions but also the similarity of the sample attributes. We describe how to incorporate our modulation into various sample analysis and synthesis methods, and demonstrate applications in object distribution, photon density estimation, and point cloud sub-sampling.

Funder

Ministry of Science and Technology of the People's Republic of China

Division of Computing and Communication Foundations

National Natural Science Foundation of China

University of Hong Kong

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3