Near-eye light field displays

Author:

Lanman Douglas1,Luebke David1

Affiliation:

1. NVIDIA Research

Abstract

We propose near-eye light field displays that enable thin, lightweight head-mounted displays (HMDs) capable of presenting nearly correct convergence, accommodation, binocular disparity, and retinal defocus depth cues. Sharp images are depicted by out-of-focus elements by synthesizing light fields corresponding to virtual objects within a viewer's natural accommodation range. We formally assess the capabilities of microlens arrays to achieve practical near-eye light field displays. Building on concepts shared with existing integral imaging displays and light field cameras, we optimize performance in the context of near-eye viewing. We establish fundamental trade-offs between the quantitative parameters of resolution, field of view, and depth of field, as well as the ergonomic parameters of form factor and ranges of allowed eye movement. As with light field cameras, our design supports continuous accommodation of the eye throughout a finite depth of field; as a result, binocular configurations provide a means to address the accommodation-convergence conflict occurring with existing stereoscopic displays. We construct a complete prototype display system, comprising: a custom-fabricated HMD using modified off-the-shelf parts and real-time, GPU-accelerated light field renderers (including a general ray tracing method and a "backward compatible" rasterization method supporting existing stereoscopic content). Through simulations and experiments, we motivate near-eye light field displays as thin, lightweight alternatives to conventional near-eye displays.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Cited by 300 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3