On-the-fly multi-scale infinite texturing from example

Author:

Vanhoey Kenneth1,Sauvage Basile1,Larue Frédéric1,Dischler Jean-Michel1

Affiliation:

1. Université de Strasbourg, CNRS, France

Abstract

In computer graphics, rendering visually detailed scenes is often achieved through texturing. We propose a method for on-the-fly non-periodic infinite texturing of surfaces based on a single image. Pattern repetition is avoided by defining patches within each texture whose content can be changed at runtime. In addition, we consistently manage multi-scale using one input image per represented scale. Undersampling artifacts are avoided by accounting for fine-scale features while colors are transferred between scales. Eventually, we allow for relief-enhanced rendering and provide a tool for intuitive creation of height maps. This is done using an ad-hoc local descriptor that measures feature self-similarity in order to propagate height values provided by the user for a few selected texels only. Thanks to the patch-based system, manipulated data are compact and our texturing approach is easy to implement on GPU. The multi-scale extension is capable of rendering finely detailed textures in real-time.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3