Accurate Summary-based Cardinality Estimation Through the Lens of Cardinality Estimation Graphs

Author:

Chen Jeremy1,Huang Yuqing1,Wang Mushi1,Salihoglu Semih1,Salem Kenneth1

Affiliation:

1. University of Waterloo

Abstract

We study two classes of summary-based cardinality estimators that use statistics about input relations and small-size joins: (i) optimistic estimators, which were defined in the context of graph database management systems, that make uniformity and conditional independence assumptions; and (ii) the recent pessimistic estimators that use information theoretic linear programs (LPs). We show that optimistic estimators can be modeled as picking bottom-to-top paths in a cardinality estimation graph (CEG), which contains subqueries as nodes and edges whose weights are average degree statistics. We show that existing optimistic estimators have either undefined or fixed choices for picking CEG paths as their estimates and ignore alternative choices. Instead, we outline a space of optimistic estimators to make an estimate on CEGs, which subsumes existing estimators. We show, using an extensive empirical analysis, that effective paths depend on the structure of the queries. We next show that optimistic estimators and seemingly disparate LP-based pessimistic estimators are in fact connected. Specifically, we show that CEGs can also model some recent pessimistic estimators. This connection allows us to provide insights into the pessimistic estimators, such as showing that they have combinatorial solutions.

Publisher

Association for Computing Machinery (ACM)

Subject

Information Systems,Software

Reference41 articles.

1. M. Abo Khamis , H. Q. Ngo , and D. Suciu . Computing Join Queries with Functional Dependencies . In PODS , 2016 . M. Abo Khamis, H. Q. Ngo, and D. Suciu. Computing Join Queries with Functional Dependencies. In PODS, 2016.

2. A. Aboulnaga , A. R. Alameldeen , and J. F. Naughton . Estimating the Selectivity of XML Path Expressions for Internet Scale Applications . In VLDB , 2001 . A. Aboulnaga, A. R. Alameldeen, and J. F. Naughton. Estimating the Selectivity of XML Path Expressions for Internet Scale Applications. In VLDB, 2001.

3. Self-tuning histograms

4. G. Alu¸c , O. Hartig , M. T. ¨ Ozsu , and K. Daudjee . Diversified Stress Testing of RDF Data Management Systems . In ISWC , 2014 . G. Alu¸c, O. Hartig, M. T. ¨Ozsu, and K. Daudjee. Diversified Stress Testing of RDF Data Management Systems. In ISWC, 2014.

5. A. Atserias , M. Grohe , and D. Marx . Size Bounds and Query Plans for Relational Joins. SICOMP, 42(4) , 2013 . A. Atserias, M. Grohe, and D. Marx. Size Bounds and Query Plans for Relational Joins. SICOMP, 42(4), 2013.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. LearnSC: An Efficient and Unified Learning-Based Framework for Subgraph Counting Problem;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3