Improving Continuous Sign Language Recognition with Consistency Constraints and Signer Removal

Author:

Zuo Ronglai1ORCID,Mak Brian1ORCID

Affiliation:

1. The Hong Kong University of Science and Technology, Hong Kong, Hong Kong

Abstract

Deep-learning-based continuous sign language recognition (CSLR) models typically consist of a visual module, a sequential module, and an alignment module. However, the effectiveness of training such CSLR backbones is hindered by limited training samples, rendering the use of a single connectionist temporal classification loss insufficient. To address this limitation, we propose three auxiliary tasks to enhance CSLR backbones. First, we enhance the visual module, which is particularly sensitive to the challenges posed by limited training samples, from the perspective of consistency. Specifically, since sign languages primarily rely on signers’ facial expressions and hand movements to convey information, we develop a keypoint-guided spatial attention module that directs the visual module to focus on informative regions, thereby ensuring spatial attention consistency. Furthermore, recognizing that the output features of both the visual and sequential modules represent the same sentence, we leverage this prior knowledge to better exploit the power of the backbone. We impose a sentence embedding consistency constraint between the visual and sequential modules, enhancing the representation power of both features. The resulting CSLR model, referred to as consistency-enhanced CSLR, demonstrates superior performance on signer-dependent datasets, where all signers appear during both training and testing. To enhance its robustness for the signer-independent setting, we propose a signer removal module based on feature disentanglement, effectively eliminating signer-specific information from the backbone. To validate the effectiveness of the proposed auxiliary tasks, we conduct extensive ablation studies. Notably, utilizing a transformer-based backbone, our model achieves state-of-the-art or competitive performance on five benchmarks, including PHOENIX-2014, PHOENIX-2014-T, PHOENIX-2014-SI, CSL, and CSL-Daily. Code and models are available at https://github.com/2000ZRL/LCSA_C2SLR_SRM.

Funder

Research Grants Council of the Hong Kong Special Administrative Region, China

Publisher

Association for Computing Machinery (ACM)

Reference83 articles.

1. A comprehensive study on deep learning-based methods for sign language recognition;Adaloglou Nikolaos M.;IEEE TMM,2021

2. Mykhaylo Andriluka, Leonid Pishchulin, Peter Gehler, and Bernt Schiele. 2014. 2D human pose estimation: New benchmark and state of the art analysis. In CVPR. 3686–3693.

3. Layer normalization;Ba Jimmy Lei;arXiv preprint arXiv:1607.06450,2016

4. Necati Cihan Camgoz, Simon Hadfield, Oscar Koller, Hermann Ney, and Richard Bowden. 2018. Neural sign language translation. In CVPR.

5. Necati Cihan Camgöz, Oscar Koller, Simon Hadfield, and Richard Bowden. 2020. Sign language transformers: Joint end-to-end sign language recognition and translation. In CVPR. 10020–10030.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3