Using Generalized Annotated Programs to Solve Social Network Diffusion Optimization Problems

Author:

Shakarian Paulo1,Broecheler Matthias2,Subrahmanian V. S.2,Molinaro Cristian3

Affiliation:

1. United States Military Academy West Point

2. University of Maryland

3. Università della Calabria

Abstract

There has been extensive work in many different fields on how phenomena of interest (e.g., diseases, innovation, product adoption) “diffuse” through a social network. As social networks increasingly become a fabric of society, there is a need to make “optimal” decisions with respect to an observed model of diffusion. For example, in epidemiology, officials want to find a set of k individuals in a social network which, if treated, would minimize spread of a disease. In marketing, campaign managers try to identify a set of k customers that, if given a free sample, would generate maximal “buzz” about the product. In this article, we first show that the well-known Generalized Annotated Program (GAP) paradigm can be used to express many existing diffusion models. We then define a class of problems called Social Network Diffusion Optimization Problems (SNDOPs). SNDOPs have four parts: (i) a diffusion model expressed as a GAP, (ii) an objective function we want to optimize with respect to a given diffusion model, (iii) an integer k  > 0 describing resources (e.g., medication) that can be placed at nodes, (iv) a logical condition VC that governs which nodes can have a resource (e.g., only children above the age of 5 can be treated with a given medication). We study the computational complexity of SNDOPs and show both NP-completeness results as well as results on complexity of approximation. We then develop an exact and a heuristic algorithm to solve a large class of SNDOPproblems and show that our GREEDY-SNDOPs algorithm achieves the best possible approximation ratio that a polynomial algorithm can achieve (unless P  =  NP ). We conclude with a prototype experimental implementation to solve SNDOPs that looks at a real-world Wikipedia dataset consisting of over 103,000 edges.

Funder

U.S. Army

Air Force Office of Scientific Research

Army Research Office

Office of Naval Research

Publisher

Association for Computing Machinery (ACM)

Subject

Computational Mathematics,Logic,General Computer Science,Theoretical Computer Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3