Resilience-by-design in Adaptive Multi-agent Traffic Control Systems

Author:

Al Mallah Ranwa1ORCID,Halabi Talal2ORCID,Farooq Bilal3ORCID

Affiliation:

1. Royal Military College of Canada, Canada

2. Laval University, Canada

3. Toronto Metropolitan University, Canada

Abstract

Connected and Autonomous Vehicles (CAVs) with their evolving data gathering capabilities will play a significant role in road safety and efficiency applications supported by Intelligent Transport Systems (ITSs), such as Traffic Signal Control (TSC) for urban traffic congestion management. However, their involvement will expand the space of security vulnerabilities and create larger threat vectors. In this article, we perform the first detailed security analysis and implementation of a new cyber-physical attack category carried out by the network of CAVs against Adaptive Multi-Agent Traffic Signal Control (AMATSC), namely, coordinated Sybil attacks, where vehicles with forged or fake identities try to alter the data collected by the AMATSC algorithms to sabotage their decisions. Consequently, a novel, game-theoretic mitigation approach at the application layer is proposed to minimize the impact of such sophisticated data corruption attacks. The devised minimax game model enables the AMATSC algorithm to generate optimal decisions under a suspected attack, improving its resilience. Extensive experimentation is performed on a traffic dataset provided by the city of Montréal under real-world intersection settings to evaluate the attack impact. Our results improved time loss on attacked intersections by approximately 48.9%. Substantial benefits can be gained from the mitigation, yielding more robust adaptive control of traffic across networked intersections.

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,General Computer Science

Reference28 articles.

1. Security Games for Vehicular Networks

2. Opportunities for multiagent systems and multiagent reinforcement learning in traffic control

3. Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Anderson, Hovav Shacham, Stefan Savage, Karl Koscher, Alexei Czeskis, Franziska Roesner, Tadayoshi Kohno, et al. 2011. Comprehensive experimental analyses of automotive attack surfaces. In USENIX Security Symposium, Vol. 4. San Francisco.

4. Qi Alfred Chen, Yucheng Yin, Yiheng Feng, Z. Morley Mao, and Henry X. Liu. 2018. Exposing congestion attack on emerging connected vehicle based traffic signal control. In Network and Distributed Systems Security (NDSS’18) Symposium.

5. Benjamin Dachis and Philippe Bergevin. 2013. True Costs of Congestion Underestimated in Canada’s Cities. C.D. Howe Institute.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3