ReCDroid+: Automated End-to-End Crash Reproduction from Bug Reports for Android Apps

Author:

Zhao Yu1ORCID,Su Ting2,Liu Yang3,Zheng Wei4,Wu Xiaoxue5,Kavuluru Ramakanth6,Halfond William G. J.7,Yu Tingting8

Affiliation:

1. University of Central Missouri, Warrensburg, MO, USA

2. East China Normal University, Shanghai, China

3. Nanyang Technological University, Nanyang Avenue, Singapore

4. Northwestern Polytechnical University, Xi’an, Shannxi, China

5. Yangzhou University, Yangzhou, Jiangsu, China

6. University of Kentucky, Lexington, KY, USA

7. University of Southern California, Los Angeles, CA, USA

8. University of Cincinnati, Cincinnati, OH, USA

Abstract

The large demand of mobile devices creates significant concerns about the quality of mobile applications (apps). Developers heavily rely on bug reports in issue tracking systems to reproduce failures (e.g., crashes). However, the process of crash reproduction is often manually done by developers, making the resolution of bugs inefficient, especially given that bug reports are often written in natural language. To improve the productivity of developers in resolving bug reports, in this paper, we introduce a novel approach, called ReCDroid+, that can automatically reproduce crashes from bug reports for Android apps. ReCDroid+ uses a combination of natural language processing (NLP) , deep learning, and dynamic GUI exploration to synthesize event sequences with the goal of reproducing the reported crash. We have evaluated ReCDroid+ on 66 original bug reports from 37 Android apps. The results show that ReCDroid+ successfully reproduced 42 crashes (63.6% success rate) directly from the textual description of the manually reproduced bug reports. A user study involving 12 participants demonstrates that ReCDroid+ can improve the productivity of developers when resolving crash bug reports.

Funder

NSF

NTU

Publisher

Association for Computing Machinery (ACM)

Subject

Software

Reference85 articles.

1. 2013. acv-11. https://github.com/robotmedia/droid-comic-viewer/issues/11.

2. 2014. lxml.etree. https://lxml.de/tutorial.html.

3. 2015. Mark message as unread make app crash. https://github.com/moezbhatti/qksms/issues/241.

4. Google Code;https://code.google.com,2016

5. Google Code Archive;https://code.google.com/archive/,2016

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Feedback-Driven Automated Whole Bug Report Reproduction for Android Apps;Proceedings of the 33rd ACM SIGSOFT International Symposium on Software Testing and Analysis;2024-09-11

2. Mole: Efficient Crash Reproduction in Android Applications With Enforcing Necessary UI Events;IEEE Transactions on Software Engineering;2024-08

3. Search-based Crash Reproduction for Android Apps;Proceedings of the Genetic and Evolutionary Computation Conference;2024-07-14

4. Mobile Bug Report Reproduction via Global Search on the App UI Model;Proceedings of the ACM on Software Engineering;2024-07-12

5. Practical, Automated Scenario-Based Mobile App Testing;IEEE Transactions on Software Engineering;2024-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3