Analysis of a Stochastic Model of Replication in Large Distributed Storage Systems

Author:

Sun Wen1,Simon Veronique2,Monnet Sebastien3,Robert Philippe1,Sens Pierre2

Affiliation:

1. INRIA, Paris, France

2. Sorbonne Universites, UPMC Univ Paris 06, CNRS, INRIA, Paris, France

3. LISTIC - Polytech Annecy-Chambery, Chambery, France

Abstract

Distributed storage systems such as Hadoop File System or Google File System (GFS) ensure data availability and durability using replication. Persistence is achieved by replicating the same data block on several nodes, and ensuring that a minimum number of copies are available on the system at any time. Whenever the contents of a node are lost, for instance due to a hard disk crash, the system regenerates the data blocks stored before the failure by transferring them from the remaining replicas. This paper is focused on the analysis of the efficiency of replication mechanism that determines the location of the copies of a given file at some server. The variability of the loads of the nodes of the network is investigated for several policies. Three replication mechanisms are tested against simulations in the context of a real implementation of a such a system: Random, Least Loaded and Power of Choice. The simulations show that some of these policies may lead to quite unbalanced situations: if β is the average number of copies per node it turns out that, at equilibrium, the load of the nodes may exhibit a high variability. It is shown in this paper that a simple variant of a power of choice type algorithm has a striking effect on the loads of the nodes: at equilibrium, the distribution of the load of a node has a bounded support, most of nodes have a load less than 2β which is an interesting property for the design of the storage space of these systems. Stochastic models are introduced and investigated to explain this interesting phenomenon.

Funder

French National Research Agency

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture,Safety, Risk, Reliability and Quality,Computer Science (miscellaneous)

Reference23 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3