A Survey of Real-Time Ethernet Modeling and Design Methodologies: From AVB to TSN

Author:

Deng Libing1ORCID,Xie Guoqi1,Liu Hong2,Han Yunbo3,Li Renfa1,Li Keqin4

Affiliation:

1. Hunan University, Changsha, China

2. Shanghai Trusted Industrial Control Platform Co., Ltd., Shanghai, China

3. Tencent CSIG, Shenzhen, China

4. State University of New York, New Paltz

Abstract

With the development of real-time critical systems, the ever-increasing communication data traffic puts forward high-bandwidth and low-delay requirements for communication networks. Therefore, various real-time Ethernet protocols have been proposed, but these protocols are not compatible with each other. The IEEE 802.1 Working Group developed standardized protocols named Audio Video Bridging (AVB) in 2005, and renamed it Time-Sensitive Networking (TSN) later. TSN not only adds new features but also retains the original functions of AVB. Proposing real-time Ethernet modeling and design methodologies is the key to meeting high-bandwidth and low-delay communication requirements. This article surveys the modeling from AVB to TSN, mainly including: (1) AVB and TSN modeling; (2) end-to-end delay modeling; (3) real-time scheduling modeling; (4) reliability modeling; and (5) security modeling. Based on these models, this article surveys the recent advances in real-time Ethernet design methodologies from AVB to TSN: (1) end-to-end delay analysis from AVB to TSN; (2) real-time scheduling from AVB to TSN; (3) reliability-aware design for TSN; and (4) security-aware design for TSN. Among the above four points, the last two points are only for TSN, because AVB lacks reliability and security mechanisms. This article further takes the automotive use case as an example to discuss the application of TSN in automobiles. Finally, this article discusses the future trends of TSN. By surveying the recent advances and future trends, we hope to provide references for researchers interested in real-time Ethernet modeling and design methodologies for AVB and TSN.

Funder

National Natural Science Foundation of China

Opening Project of Shanghai Trusted Industrial Control Platform

Fundamental Research Funds for the Central Universities, Hunan University, China

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science,Theoretical Computer Science

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3