Shifting Focus with HCEye: Exploring the Dynamics of Visual Highlighting and Cognitive Load on User Attention and Saliency Prediction

Author:

Das Anwesha1ORCID,Wu Zekun1ORCID,Skrjanec Iza2ORCID,Feit Anna Maria1ORCID

Affiliation:

1. Saarland Informatics Campus, Saarland University, Saarbrücken, Saarland, Germany

2. Language Science and Technology, Saarland University, Saarbrücken, Saarland, Germany

Abstract

Visual highlighting can guide user attention in complex interfaces. However, its effectiveness under limited attentional capacities is underexplored. This paper examines the joint impact of visual highlighting (permanent and dynamic) and dual-task-induced cognitive load on gaze behaviour. Our analysis, using eye-movement data from 27 participants viewing 150 unique webpages reveals that while participants' ability to attend to UI elements decreases with increasing cognitive load, dynamic adaptations (i.e., highlighting) remain attention-grabbing. The presence of these factors significantly alters what people attend to and thus what is salient. Accordingly, we show that state-of-the-art saliency models increase their performance when accounting for different cognitive loads. Our empirical insights, along with our openly available dataset, enhance our understanding of attentional processes in UIs under varying cognitive (and perceptual) loads and open the door for new models that can predict user attention while multitasking.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Association for Computing Machinery (ACM)

Reference61 articles.

1. Tobii AB. [n. d.]. Tobii Pro Lab. https://www.tobii.com/

2. Fitting Linear Mixed-Effects Models Usinglme4

3. James Baumeister, Seung Youb Ssin, Neven AM ElSayed, Jillian Dorrian, David P Webb, James A Walsh, Timothy M Simon, Andrew Irlitti, Ross T Smith, Mark Kohler, et al. 2017. Cognitive cost of using augmented reality displays. IEEE transactions on visualization and computer graphics 23, 11 (2017), 2378--2388.

4. Zoya Bylinskii, Tilke Judd, Aude Oliva, Antonio Torralba, and Frédo Durand. 2018. What do different evaluation metrics tell us about saliency models? IEEE transactions on pattern analysis and machine intelligence 41, 3 (2018), 740--757.

5. How are learning strategies reflected in the eyes? Combining results from self-reports and eye-tracking

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3