Network-based Fake News Detection

Author:

Zhou Xinyi1,Zafarani Reza1

Affiliation:

1. Syracuse University, Syracuse, NY, USA

Abstract

Fake news gains has gained significant momentum, strongly motivating the need for fake news research. Many fake news detection approaches have thus been proposed, where most of them heavily rely on news content. However, networkbased clues revealed when analyzing news propagation on social networks is an information that has hardly been comprehensively explored or used for fake news detection. We bridge this gap by proposing a network-based pattern-driven fake news detection approach. We aim to study the patterns of fake news in social networks, which refer to the news being spread, spreaders of the news and relationships among the spreaders. Empirical evidence and interpretations on the existence of such patterns are provided based on social psychological theories. These patterns are then represented at various network levels (i.e., node-level, ego-level, triad-level, community-level and the overall network) for being further utilized to detect fake news. The proposed approach enhances the explainability in fake news feature engineering. Experiments conducted on real-world data demonstrate that the proposed approach can outperform the state of the arts.

Publisher

Association for Computing Machinery (ACM)

Reference44 articles.

1. Fast unfolding of communities in large networks

2. The Hidden Geometry of Complex, Network-Driven Contagion Phenomena

3. Information credibility on twitter

4. R. B. Cialdini. Influence: Science and Practice volume 4. Pearson education Boston MA 2009. R. B. Cialdini. Influence: Science and Practice volume 4. Pearson education Boston MA 2009.

5. Computational Fact Checking from Knowledge Networks

Cited by 120 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3