Time-space lower bounds for satisfiability

Author:

Fortnow Lance1,Lipton Richard2,van Melkebeek Dieter3,Viglas Anastasios4

Affiliation:

1. University of Chicago, Chicago, Illinois

2. Georgia Institute of Technology, Atlanta, Georgia

3. University of Wisconsin, Madison, Wisconsin

4. University of Sydney, Sydney, Australia

Abstract

We establish the first polynomial time-space lower bounds for satisfiability on general models of computation. We show that for any constant c less than the golden ratio there exists a positive constant d such that no deterministic random-access Turing machine can solve satisfiability in time n c and space n d , where d approaches 1 when c does. On conondeterministic instead of deterministic machines, we prove the same for any constant c less than √2.Our lower bounds apply to nondeterministic linear time and almost all natural NP-complete problems known. In fact, they even apply to the class of languages that can be solved on a nondeterministic machine in linear time and space n 1/c .Our proofs follow the paradigm of indirect diagonalization. We also use that paradigm to prove time-space lower bounds for languages higher up in the polynomial-time hierarchy.

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Hardware and Architecture,Information Systems,Control and Systems Engineering,Software

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Self-Improvement for Circuit-Analysis Problems;Proceedings of the 56th Annual ACM Symposium on Theory of Computing;2024-06-10

2. Open Problems Column;ACM SIGACT News;2022-12-19

3. Pseudorandom Bits and Lower Bounds for Randomized Turing Machines;Theory of Computing;2022

4. Almost-Everywhere Circuit Lower Bounds from Non-Trivial Derandomization;2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS);2020-11

5. Tight Time-Space Lower Bounds for Finding Multiple Collision Pairs and Their Applications;Advances in Cryptology – EUROCRYPT 2020;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3