SIR-GN: A Fast Structural Iterative Representation Learning Approach For Graph Nodes

Author:

Joaristi Mikel1,Serra Edoardo1ORCID

Affiliation:

1. Boise State University, Boise, Idaho

Abstract

Graph representation learning methods have attracted an increasing amount of attention in recent years. These methods focus on learning a numerical representation of the nodes in a graph. Learning these representations is a powerful instrument for tasks such as graph mining, visualization, and hashing. They are of particular interest because they facilitate the direct use of standard machine learning models on graphs. Graph representation learning methods can be divided into two main categories: methods preserving the connectivity information of the nodes and methods preserving nodes’ structural information. Connectivity-based methods focus on encoding relationships between nodes, with connected nodes being closer together in the resulting latent space. While methods preserving structure generate a latent space where nodes serving a similar structural function in the network are encoded close to each other, independently of them being connected or even close to each other in the graph. While there are a lot of works that focus on preserving node connectivity, only a few works focus on preserving nodes’ structure. Properly encoding nodes’ structural information is fundamental for many real-world applications as it has been demonstrated that this information can be leveraged to successfully solve many tasks where connectivity-based methods usually fail. A typical example is the task of node classification, i.e., the assignment or prediction of a particular label for a node. Current limitations of structural representation methods are their scalability, representation meaning, and no formal proof that guaranteed the preservation of structural properties. We propose a new graph representation learning method, called Structural Iterative Representation learning approach for Graph Nodes ( SIR-GN ). In this work, we propose two variations ( SIR-GN: GMM and SIR-GN: K-Means ) and show how our best variation SIR-GN: K-Means : (1) theoretically guarantees the preservation of graph structural similarities, (2) provides a clear meaning about its representation and a way to interpret it with a specifically designed attribution procedure, and (3) is scalable and fast to compute. In addition, from our experiment, we show that SIR-GN: K-Means is often better or, in the worst-case comparable than the existing structural graph representation learning methods present in the literature. Also, we empirically show its superior scalability and computational performance when compared to other existing approaches.

Funder

Army Research Office

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Novel Method to Enable Transfer Learning of Structural Graph Representations;2023 IEEE International Conference on Big Data (BigData);2023-12-15

2. Prediction of Future Nation-initiated Cyberattacks from News-based Political Event Graph;2023 IEEE 10th International Conference on Data Science and Advanced Analytics (DSAA);2023-10-09

3. A Graph-Representation-Learning Framework for Supporting Android Malware Identification and Polymorphic Evolution;2023 10th IEEE Swiss Conference on Data Science (SDS);2023-06

4. An AI Framework for Modelling and Evaluating Attribution Methods in Enhanced Machine Learning Interpretability;2023 IEEE 47th Annual Computers, Software, and Applications Conference (COMPSAC);2023-06

5. Temporal SIR-GN: Efficient and Effective Structural Representation Learning for Temporal Graphs;Proceedings of the VLDB Endowment;2023-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3