Indexing the extended Dyck-CFL reachability for context-sensitive program analysis

Author:

Shi Qingkai1ORCID,Wang Yongchao2ORCID,Yao Peisen2ORCID,Zhang Charles2ORCID

Affiliation:

1. Ant Group, China

2. Hong Kong University of Science and Technology, China

Abstract

Many context-sensitive dataflow analyses can be formulated as an extended Dyck-CFL reachability problem, where function calls and returns are modeled as partially matched parentheses. Unfortunately, despite many works on the standard Dyck-CFL reachability problem, solving the extended version is still of quadratic space complexity and nearly cubic time complexity, significantly limiting the scalability of program analyses. This paper, for the first time to the best of our knowledge, presents a cheap approach to transforming the extended Dyck-CFL reachability problem to conventional graph reachability, a much easier and well-studied problem. This transformation allows us to benefit from recent advances in reachability indexing schemes, making it possible to answer any reachability query in a context-sensitive dataflow analysis within almost constant time plus only a few extra spaces. We have implemented our approach in two common context-sensitive dataflow analyses, one determines pointer alias relations and the other tracks information flows. Experimental results demonstrate that, compared to their original analyses, we can achieve orders of magnitude (10 2 × to 10 5 ×) speedup at the cost of only a moderate space overhead. Our implementation is publicly available.

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. PSPC: Efficient Parallel Shortest Path Counting on Large-Scale Graphs;2023 IEEE 39th International Conference on Data Engineering (ICDE);2023-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3