Avoiding Communication in Successive Band Reduction

Author:

Ballard Grey1,Demmel James2,Knight Nicholas2

Affiliation:

1. University of California, Berkeley and Sandia National Laboratories

2. University of California, Berkeley

Abstract

The running time of an algorithm depends on both arithmetic and communication (i.e., data movement) costs, and the relative costs of communication are growing over time. In this work, we present sequential and distributed-memory parallel algorithms for tridiagonalizing full symmetric and symmetric band matrices that asymptotically reduce communication compared to previous approaches. The tridiagonalization of a symmetric band matrix is a key kernel in solving the symmetric eigenvalue problem for both full and band matrices. In order to preserve structure, tridiagonalization routines use annihilate-and-chase procedures that previously have suffered from poor data locality and high parallel latency cost. We improve both by reorganizing the computation and obtain asymptotic improvements. We also propose new algorithms for reducing a full symmetric matrix to band form in a communication-efficient manner. In this article, we consider the cases of computing eigenvalues only and of computing eigenvalues and all eigenvectors.

Funder

Center for Future Architecture Research

Lockheed Martin Corporation

Sandia National Laboratories

US DOE

U.S. Department of Energy Contract

Microsoft

ParLab

DARPA

Math Works

NSF

Intel

STARnet

National Instruments

Sandia National Laboratories Truman Fellowship in National Security Science and Engineering

Samsung

UC Discovery

Nokia

NVIDIA

Sandia Corporation

Oracle

Semiconductor Research Corporation

MARCO

Publisher

Association for Computing Machinery (ACM)

Subject

Computational Theory and Mathematics,Computer Science Applications,Hardware and Architecture,Modeling and Simulation,Software

Reference55 articles.

1. The input/output complexity of sorting and related problems

2. Agullo E. Dongarra J. Hadri B. Kurzak J. Langou J. Langou J. Ltaief H. Luszczek P. and Yarkhan A. 2009. PLASMA Users' Guide. http://icl.cs.utk.edu/plasma/. Agullo E. Dongarra J. Hadri B. Kurzak J. Langou J. Langou J. Ltaief H. Luszczek P. and Yarkhan A. 2009. PLASMA Users' Guide . http://icl.cs.utk.edu/plasma/.

3. LAPACK Users' Guide

4. Parallel solution of partial symmetric eigenvalue problems from electronic structure calculations

5. Developing algorithms and software for the parallel solution of the symmetric eigenvalue problem

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Generalized Ware-Amdhal Law;2024 32nd Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP);2024-03-20

2. Efficient parallel reduction of bandwidth for symmetric matrices;Parallel Computing;2023-02

3. Algorithm and Software Overhead: A Theoretical Approach to Performance Portability;Parallel Processing and Applied Mathematics;2023

4. High-performance sampling of generic determinantal point processes;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2020-01-20

5. Improved Unconstrained Energy Functional Method for Eigensolvers in Electronic Structure Calculations;Proceedings of the 48th International Conference on Parallel Processing;2019-08-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3