Estimating the selectivity of approximate string queries

Author:

Mazeika Arturas1,Böhlen Michael H.1,Koudas Nick2,Srivastava Divesh3

Affiliation:

1. Free University of Bozen-Bolzano, Bozen-Bolzano BZ, Italy

2. University of Toronto, Toronto, Ontario

3. AT&T Labs--Research, Florham Park, NJ

Abstract

Approximate queries on string data are important due to the prevalence of such data in databases and various conventions and errors in string data. We present the VSol estimator, a novel technique for estimating the selectivity of approximate string queries. The VSol estimator is based on inverse strings and makes the performance of the selectivity estimator independent of the number of strings. To get inverse strings we decompose all database strings into overlapping substrings of length q (q-grams) and then associate each q-gram with its inverse string: the IDs of all strings that contain the q-gram. We use signatures to compress inverse strings, and clustering to group similar signatures. We study our technique analytically and experimentally. The space complexity of our estimator only depends on the number of neighborhoods in the database and the desired estimation error. The time to estimate the selectivity is independent of the number of database strings and linear with respect to the length of query string. We give a detailed empirical performance evaluation of our solution for synthetic and real-world datasets. We show that VSol is effective for large skewed databases of short strings.

Publisher

Association for Computing Machinery (ACM)

Subject

Information Systems

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Context Extraction in Unsupervised Entity Resolution;2023 Congress in Computer Science, Computer Engineering, & Applied Computing (CSCE);2023-07-24

2. Using positional sequence patterns to estimate the selectivity of SQL LIKE queries;Expert Systems with Applications;2021-03

3. Astrid;Proceedings of the VLDB Endowment;2020-12

4. Monotonic Cardinality Estimation of Similarity Selection: A Deep Learning Approach;Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data;2020-06-11

5. QuickSel: Quick Selectivity Learning with Mixture Models;Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data;2020-06-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3