Generic functional parallel algorithms: scan and FFT

Author:

Elliott Conal1

Affiliation:

1. Target, USA

Abstract

Parallel programming, whether imperative or functional, has long focused on arrays as the central data type. Meanwhile, typed functional programming has explored a variety of data types, including lists and various forms of trees. Generic functional programming decomposes these data types into a small set of fundamental building blocks: sum, product, composition, and their associated identities. Definitions over these few fundamental type constructions then automatically assemble into algorithms for an infinite variety of data types—some familiar and some new. This paper presents generic functional formulations for two important and well-known classes of parallel algorithms: parallel scan (generalized prefix sum) and fast Fourier transform (FFT). Notably, arrays play no role in these formulations. Consequent benefits include a simpler and more compositional style, much use of common algebraic patterns and freedom from possibility of run-time indexing errors. The functional generic style also clearly reveals deep commonality among what otherwise appear to be quite different algorithms. Instantiating the generic formulations, two well-known algorithms for each of parallel scan and FFT naturally emerge, as well as two possibly new algorithms.

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,Software

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Rank-Polymorphism for Shape-Guided Blocking;Proceedings of the 11th ACM SIGPLAN International Workshop on Functional High-Performance and Numerical Computing;2023-08-30

2. A Generalized Parallel Prefix Sums Algorithm for Arbitrary Size Arrays;Parallel Processing and Applied Mathematics;2023

3. Artificial Intelligence Enterprise Management Using Deep Learning;Computational Intelligence and Neuroscience;2022-06-17

4. Parallel scan as a multidimensional array problem;Proceedings of the 8th ACM SIGPLAN International Workshop on Libraries, Languages and Compilers for Array Programming;2022-06-13

5. Generating Work Efficient Scan Implementations for GPUs the Functional Way;Euro-Par 2022: Parallel Processing;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3