UWB microwave imaging for breast cancer detection

Author:

Casu Mario R.1,Colonna Francesco1,Crepaldi Marco2,Demarchi Danilo1,Graziano Mariagrazia1,Zamboni Maurizio1

Affiliation:

1. Politecnico di Torino, DET

2. Italian Institute of Technology

Abstract

An UWB microwave imaging system for breast cancer detection consists of antennas, transceivers, and a high-performance embedded system for elaborating the received signals and reconstructing breast images. In this article we focus on this embedded system. To accelerate the image reconstruction, the Beamforming phase has to be implemented in a parallel fashion. We assess its implementation in three currently available high-end platforms based on a multicore CPU, a GPU, and an FPGA, respectively. We then project the results applying technology scaling rules to future many-core CPUs, many-thread GPUs, and advanced FPGAs. We consider an optimistic case in which available resources increase according to Moore's law only, and a pessimistic case in which only a fraction of those resources are available due to a limited power budget. In both scenarios, an implementation that includes a high-end FPGA outperforms the other alternatives. Since the number of effectively usable cores in future many-cores will be power-limited, and there is a trend toward the integration of power-efficient accelerators, we conjecture that a chip consisting of a many-core section and a reconfigurable logic section will be the perfect platform for this application.

Funder

Ministero dell'Istruzione, dell'Università e della Ricerca

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Software

Reference34 articles.

1. Advanced Microwave Imaging

2. Altera. 2011. Using floating-point fpgas for dsp in radar. WP-01156-1.0 Altera White Paper. Altera. 2011. Using floating-point fpgas for dsp in radar. WP-01156-1.0 Altera White Paper.

3. A comprehensive comparison of GPU- and FPGA-based acceleration of reflection image reconstruction for 3D ultrasound computer tomography

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3