S 3 Agent: Unlocking the Power of VLLM for Zero-Shot Multi-modal Sarcasm Detection

Author:

Wang Peng1ORCID,Zhang Yongheng1ORCID,Fei Hao2ORCID,Chen Qiguang3ORCID,Wang Yukai1ORCID,Si Jiasheng4ORCID,Lu Wenpeng4ORCID,Li Min1ORCID,Qin Libo1ORCID

Affiliation:

1. School of Computer Science and Engineering, Central South University, China

2. National University of Singapore, Singapore

3. Harbin Institute of Technology, China

4. Key Laboratory of Computing Power Network and Information Security, Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), China

Abstract

Multi-modal sarcasm detection involves determining whether a given multi-modal input conveys sarcastic intent by analyzing the underlying sentiment. Recently, vision large language models have shown remarkable success on various of multi-modal tasks. Inspired by this, we systematically investigate the impact of vision large language models in zero-shot multi-modal sarcasm detection task. Furthermore, to capture different perspectives of sarcastic expressions, we propose a multi-view agent framework, S 3 Agent, designed to enhance zero-shot multi-modal sarcasm detection by leveraging three critical perspectives: superficial expression , semantic information , and sentiment expression . Our experiments on the MMSD2.0 dataset, which involves six models and four prompting strategies, demonstrate that our approach achieves state-of-the-art performance. Our method achieves an average improvement of 13.2% in accuracy. Moreover, we evaluate our method on the text-only sarcasm detection task, where it also surpasses baseline approaches.

Publisher

Association for Computing Machinery (ACM)

Reference39 articles.

1. Nastaran Babanejad Heidar Davoudi Aijun An and Manos Papagelis. 2020. Affective and Contextual Embedding for Sarcasm Detection. In Proceedings of the 28th International Conference on Computational Linguistics Donia Scott Nuria Bel and Chengqing Zong (Eds.). International Committee on Computational Linguistics Barcelona Spain (Online) 225–243. https://doi.org/10.18653/v1/2020.coling-main.20

2. Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou, and Jingren Zhou. 2023. Qwen-vl: A frontier large vision-language model with versatile abilities. arXiv preprint arXiv:2308.12966 (2023).

3. David Bamman and Noah Smith. 2015. Contextualized sarcasm detection on twitter. In proceedings of the international AAAI conference on web and social media, Vol. 9. 574–577.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3