Using Deep Learning for Big Spatial Data Partitioning

Author:

Vu Tin1,Belussi Alberto2,Migliorini Sara2,Eldway Ahmed1ORCID

Affiliation:

1. University of California, Riverside

2. University of Verona, Verona VR, Italy

Abstract

This article explores the use of deep learning to choose an appropriate spatial partitioning technique for big data. The exponential increase in the volumes of spatial datasets resulted in the development of big spatial data frameworks. These systems need to partition the data across machines to be able to scale out the computation. Unfortunately, there is no current method to automatically choose an appropriate partitioning technique based on the input data distribution. This article addresses this problem by using deep learning to train a model that captures the relationship between the data distribution and the quality of the partitioning techniques. We propose a solution that runs in two phases, training and application. The offline training phase generates synthetic data based on diverse distributions, partitions them using six different partitioning techniques, and measures their quality using four quality metrics. At the same time, it summarizes the datasets using a histogram and well-designed skewness measures. The data summaries and the quality metrics are then use to train a deep learning model. The second phase uses this model to predict the best partitioning technique given a new dataset that needs to be partitioned. We run an extensive experimental evaluation on big spatial data, and we experimentally show the applicability of the proposed technique. We show that the proposed model outperforms the baseline method in terms of accuracy for choosing the best partitioning technique by only analyzing the summary of the datasets.

Funder

National Science Foundation

National Institute of Food and Agriculture

Publisher

Association for Computing Machinery (ACM)

Subject

Discrete Mathematics and Combinatorics,Geometry and Topology,Computer Science Applications,Modeling and Simulation,Information Systems,Signal Processing

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Advances in AI-assisted biochip technology for biomedicine;Biomedicine & Pharmacotherapy;2024-08

2. A Generic Machine Learning Model for Spatial Query Optimization based on Spatial Embeddings;ACM Transactions on Spatial Algorithms and Systems;2024-04-13

3. L/STIM: A Framework for Detecting Multi-Stage Cyber Attacks;2024 International Russian Smart Industry Conference (SmartIndustryCon);2024-03-25

4. A learning-based framework for spatial join processing: estimation, optimization and tuning;The VLDB Journal;2024-02-13

5. Learned Spatial Data Partitioning;Proceedings of the Sixth International Workshop on Exploiting Artificial Intelligence Techniques for Data Management;2023-06-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3