Affiliation:
1. Radboud University Nijmegen, The Netherlands
2. University of Oxford, United Kingdom
Abstract
We spell out the paradigm of
exact conditioning
as an intuitive and powerful way of conditioning on observations in probabilistic programs. This is contrasted with likelihood-based
scoring
known from languages such as
Stan
. We study exact conditioning in the cases of discrete and Gaussian probability, presenting prototypical languages for each case and giving semantics to them. We make use of categorical probability (namely Markov and CD categories) to give a general account of exact conditioning which avoids limits and measure theory, instead focusing on restructuring dataflow and program equations. The correspondence between such categories and a class of programming languages is made precise by defining the internal language of a CD category.
Publisher
Association for Computing Machinery (ACM)
Subject
Artificial Intelligence,Hardware and Architecture,Information Systems,Control and Systems Engineering,Software