Affiliation:
1. Aristotle University of Thessaloniki, Greece
Abstract
This article presents a novel approach to training classifiers for concept detection using tags and a variant of Support Vector Machine that enables the usage of training weights per sample. Combined with an appropriate tag weighting mechanism, more relevant samples play a more important role in the calibration of the final concept-detector model. We propose a complete, automated framework that (i) calculates relevance scores for each image-concept pair based on image tags, (ii) transforms the scores into relevance probabilities and automatically annotates each image according to this probability, (iii) transforms either the relevance scores or the probabilities into appropriate training weights and finally, (iv) incorporates the training weights and the visual features into a Fuzzy Support Vector Machine classifier to build the concept-detector model. The framework can be applied to online public collections, by gathering a large pool of diverse images, and using the calculated probability to select a training set and the associated training weights. To evaluate our argument, we experiment on two large annotated datasets. Experiments highlight the retrieval effectiveness of the proposed approach. Furthermore, experiments with various levels of annotation error show that using weights derived from tags significantly increases the robustness of the resulting concept detectors.
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Networks and Communications,Hardware and Architecture
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献