Affiliation:
1. Italian National Research Council; and Univ. of Naples “Federico II”, Naples, Italy
Abstract
Our method is based on the numerical evaluation of the integral which occurs in the Riemann Inversion formula. The trapezoidal rule approximation to this integral reduces to a Fourier series. We analyze the corresponding discretization error and demonstrate how this expression can be used in the development of an
automatic routine
, one in which the user needs to specify only the required accuracy.
Publisher
Association for Computing Machinery (ACM)
Subject
Applied Mathematics,Software
Reference18 articles.
1. Numerical evalution of continued fractions;BLANCH G.;SIAM Rev.,1964
2. Numerical Inversion of Laplace Transforms Using a Fourier Series Approximation
3. D'ALESSIO A. D'AMORE L. AND LACCETTI G. 1994. An effective discretization error estimate of Fourier series methods for the numerical inversion of the Laplace transform. Ricerche di Matematica 43 2 293-307. D'ALESSIO A. D'AMORE L. AND LACCETTI G. 1994. An effective discretization error estimate of Fourier series methods for the numerical inversion of the Laplace transform. Ricerche di Matematica 43 2 293-307.
4. Numerical inversion of the Laplace transform: A survey and comparison of methods;DAVIES B.;J. Comput. Phys.,1979
5. An improved method for numerical inversion of Laplace Transforms;DE HOOG F.R.;SIAM J. Sci. Stat. Comput.,1982
Cited by
46 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献