Ranking from Crowdsourced Pairwise Comparisons via Smoothed Riemannian Optimization

Author:

Dong Jialin1,Yang Kai1,Shi Yuanming2

Affiliation:

1. ShanghaiTech University and University of Chinese Academy of Sciences, Shanghai, China

2. ShanghaiTech University, Shanghai, China

Abstract

Social Internet of Things has recently become a promising paradigm for augmenting the capability of humans and devices connected in the networks to provide services. In social Internet of Things network, crowdsourcing that collects the intelligence of the human crowd has served as a powerful tool for data acquisition and distributed computing. To support critical applications (e.g., a recommendation system and assessing the inequality of urban perception), in this article, we shall focus on the collaborative ranking problems for user preference prediction from crowdsourced pairwise comparisons. Based on the Bradley--Terry--Luce (BTL) model, a maximum likelihood estimation (MLE) is proposed via low-rank approach in order to estimate the underlying weight/score matrix, thereby predicting the ranking list for each user. A novel regularized formulation with the smoothed surrogate of elementwise infinity norm is proposed in order to address the unique challenge of the coupled the non-smooth elementwise infinity norm constraint and non-convex low-rank constraint in the MLE problem. We solve the resulting smoothed rank-constrained optimization problem via developing the Riemannian trust-region algorithm on quotient manifolds of fixed-rank matrices, which enjoys the superlinear convergence rate. The admirable performance and algorithmic advantages of the proposed method over the state-of-the-art algorithms are demonstrated via numerical results. Moreover, the proposed method outperforms state-of-the-art algorithms on large collaborative filtering datasets in both success rate of inferring preference and normalized discounted cumulative gain.

Funder

National Nature Science Foundation of China

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. CrowdDC: Ranking From Crowdsourced Paired Comparison With Divide-and-Conquer;IEEE Transactions on Computational Social Systems;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3