TACCLE

Author:

Chen Huo Yan1,Tse T. H.2,Chen T. Y.3

Affiliation:

1. Jinan Univ., Guangzhou, China

2. Univ. of Hong Kong, Hong Kong

3. Swinburne Univ. of Technology, Hawthorn, Victoria, Australia

Abstract

Object-oriented programming consists of several different levels of abstraction, namely, the algorithmic level, class level, cluster level, and system level. The testing of object-oriented software at the algorithmic and system levels is similar to conventional program testing. Testing at the class and cluster levels poses new challenges. Since methods and objects may interact with one another with unforeseen combinations and invocations, they are much more complex to simulate and test than the hierarchy of functional calls in conventional programs. In this paper, we propose a methodology for object-oriented software testing at the class and cluster levels. In class-level testing, it is essential to determine whether objects produced from the execution of implemented systems would preserve the properties defined by the specification, such as behavioral equivalence and nonequivalence. Our class-level testing methodology addresses both of these aspects. For the testing of behavioral equivalence, we propose to select fundamental pairs of equivalent ground terms as test cases using a black-box technique based on algebraic specifications, and then determine by means of a white-box technique whether the objects resulting from executing such test cases are observationally equivalent. To address the testing of behavioral nonequivalence, we have identified and analyzed several nontrivial problems in the current literature. We propose to classify term equivalence into four types, thereby setting up new concepts and deriving important properties. Based on these results, we propose an approach to deal with the problems in the generation of nonequivalent ground terms as test cases. Relatively little research has contributed to cluster-level testing. In this paper, we also discuss black-box testing at the cluster level. We illustrate the feasibility of using contract, a formal specification language for the behavioral dependencies and interactions among cooperating objects of different classes in a given cluster. We propose an approach to test the interactions among different classes using every individual message-passing rule in the given Contract specification. We also present an approach to examine the interactions among composite message-passing sequences. We have developed four testing tools to support our methodology.

Publisher

Association for Computing Machinery (ACM)

Subject

Software

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. “Testing Can Be Formal Too”: 30 Years Later;The French School of Programming;2023-10-11

2. Automatic Detection of Interaction Errors;2022 IEEE/ACIS 20th International Conference on Software Engineering Research, Management and Applications (SERA);2022-05-25

3. Discovering boundary values of feature-based machine learning classifiers through exploratory datamorphic testing;Journal of Systems and Software;2022-05

4. Object-Oriented Software Testing: A Review;Lecture Notes in Networks and Systems;2022

5. Syntax‐based metamorphic relation prediction via the bagging framework;Expert Systems;2021-12-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3