Adaptive Semantic Information Extraction of Tibetan Opera Mask with Recall Loss

Author:

wen yao1,li jie2,cai donghong3,Dong Zhicheng4ORCID,cai fangkai5,lan ping4,zhou quan6

Affiliation:

1. Tibet University, Lhasa, China

2. Chongqing University of Science and Technology, Chongqing, China

3. Jinan University, Guangzhou, China

4. School of Information Science and Technology, Tibet University, Lhasa, China

5. Chengdu Technological University, Chengdu, China

6. College of Electrical and Information Engineering, Hunan University, Changsha, China

Abstract

With the development of artificial intelligence, natural language processing enables us to better understand and utilize semantic information. However, traditional object detection algorithms cannot get an effective performance, when dealed with Tibetan opera mask datasets which have the properties of limited samples, symmetrical patterns and high inter-class distances. In order to solve this issue, we propose a novel feature representation model with recall loss function for detecting different marks. In the model, we develop an adaptive feature extraction network with fused layers to extract features. Furthermore, a lightweight efficient attention mechanism is designed to enhance the significance of key features. Additionally, a recall loss function is proposed to increase the differences among classes. Finally, experimental results on the dataset of Tibetan opera mask demonstrate that our proposed model outperforms compared models.

Publisher

Association for Computing Machinery (ACM)

Reference43 articles.

1. Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. 2006. Surf: Speeded up robust features. In Computer Vision–ECCV 2006: 9th European Conference on Computer Vision, Graz, Austria, May 7-13, 2006. Proceedings, Part I 9. Springer, 404–417.

2. Xception: Deep Learning with Depthwise Separable Convolutions

3. KR1442 Chowdhary and KR Chowdhary. 2020. Natural language processing. Fundamentals of artificial intelligence(2020) 603–649.

4. Navneet Dalal and Bill Triggs. 2005. Histograms of oriented gradients for human detection. In 2005 IEEE computer society conference on computer vision and pattern recognition (CVPR’05) Vol.  1. Ieee 886–893.

5. ImageNet: A large-scale hierarchical image database

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3