A model-driven approach for the formal verification of storm-based streaming applications

Author:

Marconi Francesco1,Bersani Marcello M.1,Rossi Matteo1

Affiliation:

1. Politecnico di Milano, Milan, Italy

Abstract

Data-intensive applications (DIAs) based on so-called Big Data technologies are nowadays a common solution adopted by IT companies to face their growing computational needs. The need for highly reliable applications able to handle huge amounts of data and the availability of infrastructures for distributed computing rapidly led industries to develop frameworks for streaming and big-data processing, like Apache Storm and Spark. The definition of methodologies and principles for good software design is, therefore, fundamental to support the development of DIAs. This paper presents an approach for non-functional analysis of DIAs through DVerT, a tool for the architectural assessment of Storm applications. The verification is based on a translation of Storm topologies into the CLTLoc metric temporal logic. It allows the designer of a Storm application to check for the existence of components that cannot process their workload in a timely manner, typically due to an incorrect design of the topology.

Publisher

Association for Computing Machinery (ACM)

Reference17 articles.

1. Apache Storm. http://storm.apache.org/. Apache Storm. http://storm.apache.org/.

2. DICE Verification Tool (D-VerT). https://github.com/dice-project/DICE-Verification. DICE Verification Tool (D-VerT). https://github.com/dice-project/DICE-Verification.

3. Zot. https://github.com/fm-polimi/zot. Zot. https://github.com/fm-polimi/zot.

4. S. T. Allen M. Jankowski and P. Pathirana. Storm Applied: Strategies for Real-time Event Processing. Manning Publications Co. Greenwich CT USA 1st edition 2015. S. T. Allen M. Jankowski and P. Pathirana. Storm Applied: Strategies for Real-time Event Processing. Manning Publications Co. Greenwich CT USA 1st edition 2015.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. StreamGen;ACM Transactions on Software Engineering and Methodology;2021-01-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3