Distributed hash sketches

Author:

Ntarmos N.1,Triantafillou P.1,Weikum G.2

Affiliation:

1. R.A. Computer Technology Institute and University of Patras, Rio, Patras, Greece

2. Max-Planck-Institut für Informatik, Saarbrücken, Germany

Abstract

Counting items in a distributed system, and estimating the cardinality of multisets in particular, is important for a large variety of applications and a fundamental building block for emerging Internet-scale information systems. Examples of such applications range from optimizing query access plans in peer-to-peer data sharing, to computing the significance (rank/score) of data items in distributed information retrieval. The general formal problem addressed in this article is computing the network-wide distinct number of items with some property (e.g., distinct files with file name containing “spiderman”) where each node in the network holds an arbitrary subset, possibly overlapping the subsets of other nodes. The key requirements that a viable approach must satisfy are: (1) scalability towards very large network size, (2) efficiency regarding messaging overhead, (3) load balance of storage and access, (4) accuracy of the cardinality estimation, and (5) simplicity and easy integration in applications. This article contributes the DHS (Distributed Hash Sketches) method for this problem setting: a distributed, scalable, efficient, and accurate multiset cardinality estimator. DHS is based on hash sketches for probabilistic counting, but distributes the bits of each counter across network nodes in a judicious manner based on principles of Distributed Hash Tables, paying careful attention to fast access and aggregation as well as update costs. The article discusses various design choices, exhibiting tunable trade-offs between estimation accuracy, hop-count efficiency, and load distribution fairness. We further contribute a full-fledged, publicly available, open-source implementation of all our methods, and a comprehensive experimental evaluation for various settings.

Funder

Sixth Framework Programme

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Data Profiling;Encyclopedia of Big Data Technologies;2022

2. Cyber-Physical Cloud Computing Systems and Internet of Everything;Intelligent Systems Reference Library;2019-11-14

3. Data Profiling;Encyclopedia of Big Data Technologies;2019

4. Data Profiling;Synthesis Lectures on Data Management;2018-11-07

5. Data Profiling;Encyclopedia of Big Data Technologies;2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3