When Massive GPU Parallelism Ain’t Enough: A Novel Hardware Architecture of 2D-LSTM Neural Network

Author:

Rybalkin Vladimir1,Ney Jonas1,Tekleyohannes Menbere Kina1,Wehn Norbert1

Affiliation:

1. Microelectronic Systems Design Research Group, University of Kaiserslautern, Kaiserslautern, Germany

Abstract

Multidimensional Long Short-Term Memory (MD-LSTM) neural network is an extension of one-dimensional LSTM for data with more than one dimension. MD-LSTM achieves state-of-the-art results in various applications, including handwritten text recognition, medical imaging, and many more. However, its implementation suffers from the inherently sequential execution that tremendously slows down both training and inference compared to other neural networks. The main goal of the current research is to provide acceleration for inference of MD-LSTM. We advocate that Field-Programmable Gate Array (FPGA) is an alternative platform for deep learning that can offer a solution when the massive parallelism of GPUs does not provide the necessary performance required by the application. In this article, we present the first hardware architecture for MD-LSTM. We conduct a systematic exploration to analyze a tradeoff between precision and accuracy. We use a challenging dataset for semantic segmentation, namely historical document image binarization from the DIBCO 2017 contest and a well-known MNIST dataset for handwritten digit recognition. Based on our new architecture, we implement FPGA-based accelerators that outperform Nvidia Geforce RTX 2080 Ti with respect to throughput by up to 9.9 and Nvidia Jetson AGX Xavier with respect to energy efficiency by up to 48 . Our accelerators achieve higher throughput, energy efficiency, and resource efficiency than FPGA-based implementations of convolutional neural networks (CNNs) for semantic segmentation tasks. For the handwritten digit recognition task, our FPGA implementations provide higher accuracy and can be considered as a solution when accuracy is a priority. Furthermore, they outperform earlier FPGA implementations of one-dimensional LSTMs with respect to throughput, energy efficiency, and resource efficiency.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Reference77 articles.

1. Are 2d-lstm really dead for offline text recognition?;Moysset Bastien;International Journal on Document Analysis and Recognition (IJDAR),2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3