Almost Tight Lower Bounds for Hard Cutting Problems in Embedded Graphs

Author:

Cohen-Addad Vincent1,De Verdière Éric Colin2,Marx Dániel3ORCID,De Mesmay Arnaud2

Affiliation:

1. Sorbonne Universités, UPMC Univ Paris 06, CNRS, LIP6, Paris, France

2. LIGM, CNRS, Univ Gustave Eiffel, Marne-la-Vallée, France

3. CISPA Helmholtz Center for Information Security, Germany

Abstract

We prove essentially tight lower bounds, conditionally to the Exponential Time Hypothesis, for two fundamental but seemingly very different cutting problems on surface-embedded graphs: the Shortest Cut Graph problem and the Multiway Cut problem. A cut graph of a graph  G embedded on a surface S is a subgraph of  G whose removal from S leaves a disk. We consider the problem of deciding whether an unweighted graph embedded on a surface of genus  G has a cut graph of length at most a given value. We prove a time lower bound for this problem of n Ω( g log g ) conditionally to the ETH. In other words, the first n O(g) -time algorithm by Erickson and Har-Peled [SoCG 2002, Discr. Comput. Geom. 2004] is essentially optimal. We also prove that the problem is W[1]-hard when parameterized by the genus, answering a 17-year-old question of these authors. A multiway cut of an undirected graph  G with t distinguished vertices, called terminals , is a set of edges whose removal disconnects all pairs of terminals. We consider the problem of deciding whether an unweighted graph  G has a multiway cut of weight at most a given value. We prove a time lower bound for this problem of n Ω( gt + g 2 + t log ( g + t )) , conditionally to the ETH, for any choice of the genus  g ≥ 0 of the graph and the number of terminals  t ≥ 4. In other words, the algorithm by the second author [Algorithmica 2017] (for the more general multicut problem) is essentially optimal; this extends the lower bound by the third author [ICALP 2012] (for the planar case). Reductions to planar problems usually involve a gridlike structure. The main novel idea for our results is to understand what structures instead of grids are needed if we want to exploit optimally a certain value  G of the genus.

Funder

French ANR project

ERC Consolidator Grant SYSTEMATICGRAPH

CNRS PEPS project COMP3D

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Hardware and Architecture,Information Systems,Control and Systems Engineering,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3