A simple method for generating gamma variables

Author:

Marsaglia George1,Tsang Wai Wan2

Affiliation:

1. Florida State Univ., Tallahassee

2. Univ. of Hong Kong, Hong Kong

Abstract

We offer a procedure for generating a gamma variate as the cube of a suitably scaled normal variate. It is fast and simple, assuming one has a fast way to generate normal variables. In brief: generate a normal variate x and a uniform variate U until In ( U )<0.5 x 2 + d - dv + d ln( v ), then return dv . Here, the gamma parameter is α ≥ 1, and v = (1 + x / *** with d = α - 1/3. The efficiency is high, exceeding 0.951, 0.981, 0.992, 0.996 at α = 1,2,4,8. The procedure can be made to run faster by means of a simple squeeze that avoids the two logarithms most of the time; return dv if U < 1-0.0331 x 4 . We give a short C program for any α ≥ 1, and show how to boost an α <1 into an α > 1. The gamma procedure is particularly fst for C implementation if the normal variate is generated in-line, via the #define feature. We include such an inline version, based on our ziggurat method. With it, and an inline uniform generator, gamma variates can be produced in 400MHz CPUs at better than 1.3 million per second, with the parameter α changing from call to call.

Publisher

Association for Computing Machinery (ACM)

Subject

Applied Mathematics,Software

Cited by 135 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Efficient sampling from phase-type distributions;Operations Research Letters;2024-11

2. References;Bayesian Statistics and Marketing;2024-07-12

3. Unsupervised image categorization based on deep generative models with disentangled representations and von Mises-Fisher distributions;International Journal of Machine Learning and Cybernetics;2024-06-23

4. Deep generative clustering methods based on disentangled representations and augmented data;International Journal of Machine Learning and Cybernetics;2024-04-28

5. GPU Acceleration of a Conjugate Exponential Model for Cancer Tissue Heterogeneity;ACM Transactions on Computing for Healthcare;2024-04-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3