Randomized minimum spanning tree algorithms using exponentially fewer random bits

Author:

Pettie Seth1,Ramachandran Vijaya2

Affiliation:

1. University of Michigan, Ann Arbor, MI

2. The University of Texas at Austin, Austin, TX

Abstract

For many fundamental problems there exist randomized algorithms that are asymptotically optimal and are superior to the best-known deterministic algorithm. Among these are the minimum spanning tree (MST) problem, the MST sensitivity analysis problem, the parallel connected components and parallel minimum spanning tree problems, and the local sorting and set maxima problems. (For the first two problems there are provably optimal deterministic algorithms with unknown, and possibly superlinear, running times.) One downside of the randomized methods for solving these problems is that they use a number of random bits linear in the size of input. In this article we develop some general methods for reducing exponentially the consumption of random bits in comparison-based algorithms. In some cases we are able to reduce the number of random bits from linear to nearly constant, without affecting the expected running time. Most of our results are obtained by adjusting or reorganizing existing randomized algorithms to work well with a pairwise or O (1)-wise independent sampler. The prominent exception, and the main focus of this article, is a linear-time randomized minimum spanning tree algorithm that is not derived from the well-known Karger-Klein-Tarjan algorithm. In many ways it resembles more closely the deterministic minimum spanning tree algorithms based on soft heaps. Further, using our algorithm as a guide, we present a unified view of the existing “nongreedy” minimum spanning tree algorithms. Concepts from the Karger-Klein-Tarjan algorithm, such as F -lightness, MST verification, and sampled graphs, are related to the concepts of edge corruption, subgraph contractibility, and soft heaps, which are the basis of the deterministic MST algorithms of Chazelle and Pettie-Ramachandran.

Funder

National Science Foundation

Texas Higher Education Coordinating Board

Publisher

Association for Computing Machinery (ACM)

Subject

Mathematics (miscellaneous)

Reference52 articles.

1. Deterministic simulation in LOGSPACE

2. Bach E. and Shallit J. 1996. Algorithmic Number Theory. The MIT Press Cambridge MA. Bach E. and Shallit J. 1996. Algorithmic Number Theory. The MIT Press Cambridge MA.

3. A Linear Time Approach to the Set Maxima Problem

4. Time bounds for selection

5. Borůvka O. 1926. O jistém problému minimálním. Práce Moravské Přírodovědecké Společnosti 3 37--58. In Czech. Borůvka O. 1926. O jistém problému minimálním. Práce Moravské Přírodovědecké Společnosti 3 37--58. In Czech.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. How long it takes for an ordinary node with an ordinary id to output?;Theoretical Computer Science;2020-04

2. Renovating Watts and Strogatz Random Graph Generation by a Sequential Approach;Web Information Systems Engineering – WISE 2018;2018

3. Randomized Minimum Spanning Tree;Encyclopedia of Algorithms;2016

4. A Quasi-Polynomial Time Partition Oracle for Graphs with an Excluded Minor;ACM Transactions on Algorithms;2015-01-13

5. Randomized Minimum Spanning Tree;Encyclopedia of Algorithms;2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3