No sorting? better searching!

Author:

Franceschini Gianni1,Grossi Roberto2

Affiliation:

1. University of Pisa, Pisa, Italy

2. University di Pisa, Pisa, Italy

Abstract

Questions about order versus disorder in systems and models have been fascinating scientists over the years. In computer science, order is intimately related to sorting, commonly meant as the task of arranging keys in increasing or decreasing order with respect to an underlying total order relation. The sorted organization is amenable for searching a set of n keys, since each search requires Θ(log n ) comparisons in the worst case, which is optimal if the cost of a single comparison can be considered a constant. Nevertheless, we prove that disorder implicitly provides more information than order does. For the general case of searching an array of multidimensional keys whose comparison cost is proportional to their length (and hence which cannot be considered a constant), we demonstrate that “suitable” disorder gives better bounds than those derivable by using the natural lexicographic order. We start from previous work done by Andersson et al. [2001], who proved that Θ( k log log n /log log(4 + k log log n /log n ) + k + log n ) character comparisons (or probes) comprise the tight complexity for searching a plain sorted array of n keys, each of length k , arranged in lexicographic order. We describe a novel permutation of the n keys that is different from the sorted order. When keys are kept “unsorted” in the array according to this permutation, the complexity of searching drops to Θ( k + log n ) character comparisons (or probes) in the worst case, which is optimal among all possible permutations, up to a constant factor. Consequently, disorder carries more information than does order; this fact was not observable before, since the latter two bounds are Θ(log n ) when k = O (1). More implications are discussed in the article, including searching in the bit-probe model.

Publisher

Association for Computing Machinery (ACM)

Subject

Mathematics (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deterministic Sparse Suffix Sorting in the Restore Model;ACM Transactions on Algorithms;2020-10-31

2. Robust and Adaptive Search;LEIBNIZ INT PR INFOR;2017

3. A quick tour on suffix arrays and compressed suffix arrays;Theoretical Computer Science;2011-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3