Uniform deterministic dictionaries

Author:

Ružić Milan1

Affiliation:

1. IT University of Copenhagen, Copenhagen, Denmark

Abstract

We present a new analysis of the well-known family of multiplicative hash functions, and improved deterministic algorithms for selecting “good” hash functions. The main motivation is realization of deterministic dictionaries with fast lookups and reasonably fast updates. The model of computation is the Word RAM, and it is assumed that the machine word-size matches the size of keys in bits. Many of the modern solutions to the dictionary problem are weakly nonuniform, that is, they require a number of constants to be computed at “compile time” for the stated time bounds to hold. The currently fastest deterministic dictionary uses constants not known to be computable in polynomial time. In contrast, our dictionaries do not require any special constants or instructions, and running times are independent of word (and key) length. Our family of dynamic dictionaries achieves a performance of the following type: lookups in time O ( t ) and updates in amortized time O ( n 1/ t ), for an appropriate parameter function t . Update procedures require division, whereas searching uses multiplication only.

Publisher

Association for Computing Machinery (ACM)

Subject

Mathematics (miscellaneous)

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Iceberg Hashing: Optimizing Many Hash-Table Criteria at Once;Journal of the ACM;2023-11-30

2. A Hash Table Without Hash Functions, and How to Get the Most Out of Your Random Bits;2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS);2022-10

3. Construct a perfect word hash function in time independent of the size of integers;Information Processing Letters;2017-12

4. Optimal Las Vegas reduction from one-way set reconciliation to error correction;Theoretical Computer Science;2016-03

5. Time–space trade-offs for longest common extensions;Journal of Discrete Algorithms;2014-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3