HLPerf: Demystifying the Performance of HLS-based Graph Neural Networks with Dataflow Architectures

Author:

Zhao Chenfeng1,Faber Clayton J.1,Chamberlain Roger D.1,Zhang Xuan2

Affiliation:

1. Dept. of Computer Science and Engineering, Washington Univ. in St. Louis, St. Louis, USA

2. Dept. of Electrical and Computer Engineering, Northeastern University, Boston, USA

Abstract

The development of FPGA-based applications using HLS is fraught with performance pitfalls and large design space exploration times. These issues are exacerbated when the application is complicated and its performance is dependent on the input data set, as is often the case with graph neural network approaches to machine learning. Here, we introduce HLPerf, an open-source, simulation-based performance evaluation framework for dataflow architectures that both supports early exploration of the design space and shortens the performance evaluation cycle. We apply the methodology to GNNHLS, an HLS-based graph neural network benchmark containing 6 commonly used graph neural network models and 4 datasets with distinct topologies and scales. The results show that HLPerf achieves over 10 000 × average simulation acceleration relative to RTL simulation and over 400 × acceleration relative to state-of-the-art cycle-accurate tools at the cost of 7% mean error rate relative to actual FPGA implementation performance. This acceleration positions HLPerf as a viable component in the design cycle.

Publisher

Association for Computing Machinery (ACM)

Reference48 articles.

1. FastSim: A Fast Simulation Framework for High-Level Synthesis

2. ARM Xilinx. 2023. Vitis Unified Software Platform Documentation: Application Acceleration Development (UG1393). https://docs.xilinx.com/r/en-US/ug1393-vitis-application-acceleration. Accessed Aug. 2023.

3. Eli Bendersky. 2023. pcyparser. https://github.com/eliben/pycparser. Accessed Oct. 2023.

4. A 30 Year Retrospective on Dennard's MOSFET Scaling Paper

5. Xavier Bresson and Thomas Laurent. 2017. Residual Gated Graph ConvNets. arXiv preprint. 11 pages. arxiv:1711.07553

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. HLS Taking Flight: Toward Using High-Level Synthesis Techniques in a Space-Borne Instrument;Proceedings of the 21st ACM International Conference on Computing Frontiers;2024-05-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3