Ibn-Ginni: An Improved Morphological Analyzer for Arabic

Author:

Nazih Waleed1,Fashwan Amany2,El-Gendy Amr3,Hifny Yasser4

Affiliation:

1. Department of Computer Science, College of Computer Engineering and Sciences, Prince Sattam bin Abdulaziz University, Saudi Arabia

2. Faculty of Arts, Linguistics and Phonetics Department, Alexandria University, Egypt

3. The Academy of Arabic Language, Egypt

4. Faculty of Computers and Artificial Intelligence, Helwan University, Egypt

Abstract

Arabic is a morphologically rich language, which means that the Arabic language has a complicated system of word formation and structure. The affixes in the Arabic language (i.e., prefixes and suffixes) can be added to root words to generate different meanings and grammatical functions. These affixes can indicate aspects such as tense, gender, number, case, person, and more. In addition, the meaning and function of words can be modified in Arabic using an internal structure known as morphological patterns. Computational morphological analyzers of Arabic are vital to developing Arabic language processing toolkits. In this paper, we introduce a new morphological analyzer (Ibn-Ginni) that inherits the speed and quality of the Buckwalter Arabic Morphological Analyzer (BAMA). The BAMA has poor coverage of the classical Arabic language. Hence, the coverage of classical Arabic is improved by using the Alkhalil analyzer. Although it is slow, it was used to generate a huge number of solutions for 3 million unique Arabic words collected from different resources. These wordform-based solutions were converted to stem-based solutions, refined manually, and added to the database of BAMA, resulting in substantial improvements in the quality of the analysis. Hence, Ibn-Ginni is a hybrid system between BAMA and Alkhalil analyzers and may be considered an efficient large-scale analyzer. The Ibn-Ginni analyzer analyzed 0.6 million more words than the BAMA analyzer. Therefore, our analyzer significantly improves the coverage of the Arabic language. Besides, the Ibn-Ginni analyzer is high-speed at providing solutions; the average time to analyze a word is 0.3 ms. Using a corpus designed for benchmarking Arabic morphological analyzers, our analyzer was able to find all solutions for 72.72% of the words. Moreover, the analyzer did not provide all possible morphological solutions for 24.24% of the words. The analyzer and its morphological database are publicly available on GitHub.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3