A Neural Network Approach to Jointly Modeling Social Networks and Mobile Trajectories

Author:

Yang Cheng1,Sun Maosong1,Zhao Wayne Xin2,Liu Zhiyuan1,Chang Edward Y.3

Affiliation:

1. Tsinghua University, Beijing

2. Renmin University of China, Beijing

3. HTC Research 8 Innovation, Palo Alto, CA

Abstract

Two characteristics of location-based services are mobile trajectories and the ability to facilitate social networking. The recording of trajectory data contributes valuable resources towards understanding users’ geographical movement behaviors. Social networking is possible when users are able to quickly connect to anyone nearby. A social network with location based services is known as location-based social network (LBSN). As shown in Cho et al. [2013], locations that are frequently visited by socially related persons tend to be correlated, which indicates the close association between social connections and trajectory behaviors of users in LBSNs. To better analyze and mine LBSN data, we need to have a comprehensive view of each of these two aspects, i.e., the mobile trajectory data and the social network. Specifically, we present a novel neural network model that can jointly model both social networks and mobile trajectories. Our model consists of two components: the construction of social networks and the generation of mobile trajectories. First we adopt a network embedding method for the construction of social networks: a networking representation can be derived for a user. The key to our model lies in generating mobile trajectories. Second, we consider four factors that influence the generation process of mobile trajectories: user visit preference, influence of friends, short-term sequential contexts, and long-term sequential contexts. To characterize the last two contexts, we employ the RNN and GRU models to capture the sequential relatedness in mobile trajectories at the short or long term levels. Finally, the two components are tied by sharing the user network representations. Experimental results on two important applications demonstrate the effectiveness of our model. In particular, the improvement over baselines is more significant when either network structure or trajectory data is sparse.

Funder

Beijing Natural Science Foundation

Major Project of the National Social Science Foundation of China

Tsinghua University Initiative Scientific Research Program

973 Program

HTC Beijing Research

National Natural Science Foundation of China

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Science Applications,General Business, Management and Accounting,Information Systems

Cited by 115 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3