Incorporating Multiple Knowledge Sources for Targeted Aspect-based Financial Sentiment Analysis

Author:

Du Kelvin1ORCID,Xing Frank2ORCID,Cambria Erik1ORCID

Affiliation:

1. School of Computer Science and Engineering, Nanyang Technological University, Singapore

2. Department of Information Systems and Analytics, National University of Singapore, Singapore

Abstract

Combining symbolic and subsymbolic methods has become a promising strategy as research tasks in AI grow increasingly complicated and require higher levels of understanding. Targeted Aspect-based Financial Sentiment Analysis (TABFSA) is an example of such complicated tasks, as it involves processes like information extraction, information specification, and domain adaptation. However, little is known about the design principles of such hybrid models leveraging external lexical knowledge. To fill this gap, we define anterior, parallel, and posterior knowledge integration and propose incorporating multiple lexical knowledge sources strategically into the fine-tuning process of pre-trained transformer models for TABFSA. Experiments on the Financial Opinion mining and Question Answering challenge (FiQA) Task 1 and SemEval 2017 Task 5 datasets show that the knowledge-enabled models systematically improve upon their plain deep learning counterparts, and some outperform state-of-the-art results reported in terms of aspect sentiment analysis error. We discover that parallel knowledge integration is the most effective and domain-specific lexical knowledge is more important according to our ablation analysis.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science,Management Information Systems

Reference83 articles.

1. Md Shad Akhtar, Abhishek Kumar, Deepanway Ghosal, Asif Ekbal, and Pushpak Bhattacharyya. 2017. A multilayer perceptron based ensemble technique for fine-grained financial sentiment analysis. In EMNLP. 540–546.

2. Dogu Araci. 2019. FinBert: Financial sentiment analysis with pre-trained language models. https://arxiv.org/abs/1908.10063.

3. Mattia Atzeni, Amna Dridi, and Diego Reforgiato Recupero. 2017. Fine-grained sentiment analysis on financial microblogs and news headlines. In Semantic Web Challenges - 4th SemWebEval Challenge at ESWC 2017. 124–128.

4. Stefano Baccianella, Andrea Esuli, and Fabrizio Sebastiani. 2010. Sentiwordnet 3.0: An enhanced lexical resource for sentiment analysis and opinion mining. In Proceedings of the 7th International Conference on Language Resources and Evaluation (LREC’10).

5. Attention and Lexicon Regularized LSTM for Aspect-based Sentiment Analysis

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3