Casting curved shadows on curved surfaces

Author:

Williams Lance1

Affiliation:

1. Computer Graphics Lab, New York Institute of Technology, Old Westbury, New York

Abstract

Shadowing has historically been used to increase the intelligibility of scenes in electron microscopy and aerial survey. Various methods have been published for the determination of shadows in computer synthesized scenes. The display of shadows may make the shape and relative position of objects in such scenes more comprehensible; it is a technique lending vividness and realism to computer animation. To date, algorithms for the determination of shadows have been restricted to scenes constructed of planar polygons. A simple algorithm is described which utilizes Z-buffer visible surface computation to display shadows cast by objects modelled of smooth surface patches. The method can be applied to all environments, in fact, for which visible surfaces can be computed. The cost of determining the shadows associated with each light source is roughly twice the cost of rendering the scene without shadows, plus a fixed transformation overhead which depends on the image resolution. No extra entities are added to the scene description in the shadowing process. This comprehensive algorithm, which permits curved shadows to be cast on curved surfaces, is contrasted with a less costly method for casting the shadows of the environment on a single ground plane. In order to attain good results, the discrete nature of the visible-surface computations must be treated with care. The effects of dither, interpolation, and geometric quantization at different stages of the shadowing algorithm are examined. The special problems posed by self-shadowing surfaces are described.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,General Computer Science

Cited by 177 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3