A Low-Complexity Approach to Distributed Cooperative Caching with Geographic Constraints

Author:

Avrachenkov Konstantin1,Goseling Jasper2,Serbetci Berksan2

Affiliation:

1. INRIA Sophia Antipolis, Valbonne, France

2. University of Twente, Enschede, Netherlands

Abstract

We consider caching in cellular networks in which each base station is equipped with a cache that can store a limited number of files. The popularity of the files is known and the goal is to place files in the caches such that the probability that a user at an arbitrary location in the plane will find the file that she requires in one of the covering caches is maximized. We develop distributed asynchronous algorithms for deciding which contents to store in which cache. Such cooperative algorithms require communication only between caches with overlapping coverage areas and can operate in asynchronous manner. The development of the algorithms is principally based on an observation that the problem can be viewed as a potential game. Our basic algorithm is derived from the best response dynamics. We demonstrate that the complexity of each best response step is independent of the number of files, linear in the cache capacity and linear in the maximum number of base stations that cover a certain area. Then, we show that the overall algorithm complexity for a discrete cache placement is polynomial in both network size and catalog size. In practical examples, the algorithm converges in just a few iterations. Also, in most cases of interest, the basic algorithm finds the best Nash equilibrium corresponding to the global optimum. We provide two extensions of our basic algorithm based on stochastic and deterministic simulated annealing which find the global optimum. Finally, we demonstrate the hit probability evolution on real and synthetic networks numerically and show that our distributed caching algorithm performs significantly better than storing the most popular content, probabilistic content placement policy and Multi-LRU caching policies.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture,Safety, Risk, Reliability and Quality,Computer Science (miscellaneous)

Reference50 articles.

1. Distributed storage in the plane

2. The Price of Stability for Network Design with Fair Cost Allocation

3. K. Avrachenkov X. Bai and J. Goseling "Optimization of caching devices with geometric constraints" arXiv preprint arXiv: 1602.03635 2016. K. Avrachenkov X. Bai and J. Goseling "Optimization of caching devices with geometric constraints" arXiv preprint arXiv: 1602.03635 2016.

4. Cooperative network design: A Nash bargaining solution approach

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3