Learning Entangled Interactions of Complex Causality via Self-Paced Contrastive Learning

Author:

Liang Yunji1ORCID,Liu Lei1ORCID,Huangfu Luwen2ORCID,Samtani Sagar3ORCID,Yu Zhiwen1ORCID,Zeng Daniel D.4ORCID

Affiliation:

1. Northwestern Polytechnical University, China

2. San Diego State University, USA

3. Indiana University, USA

4. Institute of Automation Chinese Academy of Sciences, China

Abstract

Learning causality from large-scale text corpora is an important task with numerous applications—for example, in finance, biology, medicine, and scientific discovery. Prior studies have focused mainly on simple causality, which only includes one cause-effect pair. However, causality is notoriously difficult to understand and analyze because of multiple cause spans and their entangled interactions. To detect complex causality, we propose a self-paced contrastive learning model, namely N2NCause, to learn entangled interactions between multiple spans. Specifically, N2NCause introduces data enhancement operations to convert implicit expressions into explicit expressions with the most rational causal connectives for the synthesis of positive samples and to invert the directed connection between a cause-effect pair for the synthesis of negative samples. To learn the semantic dependency and causal direction of positive and negative samples, self-paced contrastive learning is proposed to learn the entangled interactions among spans, including the interaction direction and interaction field. We evaluated the performance of N2NCause in three cause-effect detection tasks. The experimental results show that, with the least data annotation efforts, N2NCause demonstrates competitive performance in detecting simple cause-effect relations, and it is superior to existing solutions for the detection of complex causality.

Funder

Natural Science Foundation of China

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3