Am I Hurt?: Evaluating Psychological Pain Detection in Hindi Text Using Transformer-based Models

Author:

Kaur Ravleen1ORCID,Bhatia M. P. S.1ORCID,Kumar Akshi2ORCID

Affiliation:

1. Department of Computer Science and Engineering, Netaji Subhas University of Technology, New Delhi, India

2. Department of Computing, Goldsmiths, University of London, London, United Kingdom

Abstract

The automated evaluation of pain is critical for developing effective pain management approaches that seek to alleviate pain while preserving patients’ functioning. Transformer-based models can aid in detecting pain from Hindi text data gathered from social media by leveraging their ability to capture complex language patterns and contextual information. By understanding the nuances and context of Hindi text, transformer models can effectively identify linguistic cues and sentiments and expressions associated with pain, enabling the detection and analysis of pain-related content present in social media posts. The purpose of this research is to analyze the feasibility of utilizing NLP techniques to automatically identify pain within Hindi textual data, providing a valuable tool for pain assessment in Hindi-speaking populations. The research showcases the HindiPainNet model, a deep neural network that employs the IndicBERT model, classifying the dataset into two class labels {pain, no_pain} for detecting pain in Hindi textual data. The model is trained and tested using a novel dataset, दर्द-ए-शायरी (pronounced as Dard-e-Shayari ), curated using posts from social media platforms. The results demonstrate the model's effectiveness, achieving an accuracy of 70.5%. This pioneer research highlights the potential of utilizing textual data from diverse sources to identify and understand pain experiences based on psychosocial factors. This research could pave the path for the development of automated pain assessment tools that help medical professionals comprehend and treat pain in Hindi-speaking populations. Additionally, it opens avenues to conduct further NLP-based multilingual pain detection research, addressing the needs of diverse language communities.

Publisher

Association for Computing Machinery (ACM)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Leveraging Hybrid Adaptive Sine Cosine Algorithm with Deep Learning for Arabic Poem Meter Detection;ACM Transactions on Asian and Low-Resource Language Information Processing;2024-07-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3